
Scalable and consistent embedding of 
 probability measures into Hilbert spaces 

 via measure quantization
Erell Gachon 

University of Bordeaux

1



Scalable and consistent embedding of 
 probability measures into Hilbert spaces 

 via measure quantization
Erell Gachon 

University of Bordeaux

Jérémie BigotElsa Cazelles
1



Statistical learning in a standard context

2



Statistical learning in a standard context

2



Statistical learning in a standard context

?

2



Statistical learning in a standard context

?

Data :  points in N ℝd

2



Our context

3



Our context

3



Our context

Data :  probability measures  supported on a compact set  of N (μ(i))N
i=1 𝒳 ℝd

3



Motivations : flow cytometry

4



Motivations : flow cytometry
Flow cytometry dataset : point cloud of  points (cells) in dimension m d

Example of flow cytometry measurements from a sample of a patient 
diagnosed with acute myeloid leukemia.

4



Motivations : flow cytometry
Flow cytometry dataset : point cloud of  points (cells) in dimension m d

Example of flow cytometry measurements from a sample of a patient 
diagnosed with acute myeloid leukemia.

d ≈ 10m ≈ 105

4



Motivations : flow cytometry
Flow cytometry dataset : point cloud of  points (cells) in dimension m d

Example of flow cytometry measurements from a sample of a patient 
diagnosed with acute myeloid leukemia.

What kind of information do we want to learn ?

d ≈ 10m ≈ 105

4



Motivations : flow cytometry
Flow cytometry dataset : point cloud of  points (cells) in dimension m d

Example of flow cytometry measurements from a sample of a patient 
diagnosed with acute myeloid leukemia.

What kind of information do we want to learn ?

Does this patient have cancer ?
Classific

ation

d ≈ 10m ≈ 105

4



Motivations : flow cytometry
Flow cytometry dataset : point cloud of  points (cells) in dimension m d

Example of flow cytometry measurements from a sample of a patient 
diagnosed with acute myeloid leukemia.

What kind of information do we want to learn ?

Does this patient have cancer ?
Classific

ation

d ≈ 10m ≈ 105

4

How many sick cells are in this sample ?

Regression



Motivations : flow cytometry
Flow cytometry dataset : point cloud of  points (cells) in dimension m d

Example of flow cytometry measurements from a sample of a patient 
diagnosed with acute myeloid leukemia.

What kind of information do we want to learn ?

Does this patient have cancer ?
Classific

ation

Data :  probability measures  with large support on a compact of N (μ(i))N
i=1 𝒳 ℝd

d ≈ 10m ≈ 105

4

How many sick cells are in this sample ?

Regression



How to perform statistical learning on 
probability measures ?

5



How to perform statistical learning on 
probability measures ?

 is the set of probability measures on , endowed with the 2-Wasserstein distance .𝒫(𝒳) 𝒳 W2

5



How to perform statistical learning on 
probability measures ?

 is the set of probability measures on , endowed with the 2-Wasserstein distance .𝒫(𝒳) 𝒳 W2
Classical machine learning algorithms are designed to handle:

5



How to perform statistical learning on 
probability measures ?

 is the set of probability measures on , endowed with the 2-Wasserstein distance .𝒫(𝒳) 𝒳 W2
Classical machine learning algorithms are designed to handle:

 sample points N  distributionsN

5



How to perform statistical learning on 
probability measures ?

 is the set of probability measures on , endowed with the 2-Wasserstein distance .𝒫(𝒳) 𝒳 W2
Classical machine learning algorithms are designed to handle:

 sample points N  distributionsN

The key : inner-product!

5



How to perform statistical learning on 
probability measures ?

 is the set of probability measures on , endowed with the 2-Wasserstein distance .𝒫(𝒳) 𝒳 W2

 not a Hilbert space(𝒫(𝒳), W2)

Classical machine learning algorithms are designed to handle:

 sample points N  distributionsN

The key : inner-product!

5



How to perform statistical learning on 
probability measures ?

 is the set of probability measures on , endowed with the 2-Wasserstein distance .𝒫(𝒳) 𝒳 W2

 not a Hilbert space(𝒫(𝒳), W2)

Classical machine learning algorithms are designed to handle:

 sample points N  distributionsN

The key : inner-product!

Solution: Embedding the probability measures into a Hilbert space using…

5



How to perform statistical learning on 
probability measures ?

 is the set of probability measures on , endowed with the 2-Wasserstein distance .𝒫(𝒳) 𝒳 W2

 not a Hilbert space(𝒫(𝒳), W2)

Classical machine learning algorithms are designed to handle:

 sample points N  distributionsN

The key : inner-product!

Solution: Embedding the probability measures into a Hilbert space using…

Linearized optimal transport Kernel Mean Embedding

5



How to perform statistical learning on 
probability measures ?

 is the set of probability measures on , endowed with the 2-Wasserstein distance .𝒫(𝒳) 𝒳 W2

 not a Hilbert space(𝒫(𝒳), W2)

Classical machine learning algorithms are designed to handle:

 sample points N  distributionsN

The key : inner-product!

Solution: Embedding the probability measures into a Hilbert space using…

Linearized optimal transport Kernel Mean Embedding

Too costly when  !m > 104

5



How to perform statistical learning on 
probability measures ?

 is the set of probability measures on , endowed with the 2-Wasserstein distance .𝒫(𝒳) 𝒳 W2

 not a Hilbert space(𝒫(𝒳), W2)

Classical machine learning algorithms are designed to handle:

 sample points N  distributionsN

The key : inner-product!

Solution: Embedding the probability measures into a Hilbert space using…

Linearized optimal transport Kernel Mean Embedding

Too costly when  !m > 104

5

Solution : reduce 
the support size of the 

 with quantizationμ(i)



Quantization

6



Quantization
Definition. A K-points quantization of a probability 
measure  aims at solvingμ

min
a∈ΣK,X∈(ℝd)K

W2
2(μ,

K
∑
k=1

akδXk)

6



Quantization
Definition. A K-points quantization of a probability 
measure  aims at solvingμ

min
a∈ΣK,X∈(ℝd)K

W2
2(μ,

K
∑
k=1

akδXk)

For , minimiser  of 

 verifies  

 
Voronoi cell centered at .

X = (X1, ⋯, XK) ∈ (ℝd)K a*

min
a∈ΣK

W2
2(μ,

K
∑
k=1

akδXk) a*k = μ(VXk
)

VXk
= {y ∈ ℝd | ∀l ≠ k,∥Xk − y∥2 ≤ ∥Xl − y∥2}

Xk

6



Quantization
Definition. A K-points quantization of a probability 
measure  aims at solvingμ

min
a∈ΣK,X∈(ℝd)K

W2
2(μ,

K
∑
k=1

akδXk)

min
a∈ΣK,X∈(ℝd)K

W2
2(μ,

K
∑
k=1

akδXk) = min
X∈(ℝd)K

W2
2(μ,

K
∑
k=1

μ(VXk
)δXk)

For , minimiser  of 

 verifies  

 
Voronoi cell centered at .

X = (X1, ⋯, XK) ∈ (ℝd)K a*

min
a∈ΣK

W2
2(μ,

K
∑
k=1

akδXk) a*k = μ(VXk
)

VXk
= {y ∈ ℝd | ∀l ≠ k,∥Xk − y∥2 ≤ ∥Xl − y∥2}

Xk

6



Quantization
Definition. A K-points quantization of a probability 
measure  aims at solvingμ

min
a∈ΣK,X∈(ℝd)K

W2
2(μ,

K
∑
k=1

akδXk)

min
a∈ΣK,X∈(ℝd)K

W2
2(μ,

K
∑
k=1

akδXk) = min
X∈(ℝd)K

W2
2(μ,

K
∑
k=1

μ(VXk
)δXk)

For , minimiser  of 

 verifies  

 
Voronoi cell centered at .

X = (X1, ⋯, XK) ∈ (ℝd)K a*

min
a∈ΣK

W2
2(μ,

K
∑
k=1

akδXk) a*k = μ(VXk
)

VXk
= {y ∈ ℝd | ∀l ≠ k,∥Xk − y∥2 ≤ ∥Xl − y∥2}

Xk

6



Quantization
Definition. A K-points quantization of a probability 
measure  aims at solvingμ

min
a∈ΣK,X∈(ℝd)K

W2
2(μ,

K
∑
k=1

akδXk)

min
a∈ΣK,X∈(ℝd)K

W2
2(μ,

K
∑
k=1

akδXk) = min
X∈(ℝd)K

W2
2(μ,

K
∑
k=1

μ(VXk
)δXk)

For , minimiser  of 

 verifies  

 
Voronoi cell centered at .

X = (X1, ⋯, XK) ∈ (ℝd)K a*

min
a∈ΣK

W2
2(μ,

K
∑
k=1

akδXk) a*k = μ(VXk
)

VXk
= {y ∈ ℝd | ∀l ≠ k,∥Xk − y∥2 ≤ ∥Xl − y∥2}

Xk

6

2-points quantization



Quantization of each measure vs mean-measure 
quantization

7



Quantization of each measure vs mean-measure 
quantization

7



Quantization of each measure vs mean-measure 
quantization

Quantization of each measure

7



Quantization of each measure vs mean-measure 
quantization

Quantization of each measure

Quantization of the 

mean measure

7



Quantization of each measure vs mean-measure 
quantization

Quantization of each measure

Quantization of the 

mean measure Computation of the 
weights for each measure.
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Method (Mean-measure quantization).
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Projection of the flow cytometry datasets on the first components of PCA after embeddings LOT (left) and KME (right) on the quantized measures with 

.K = 16
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Numerical experiments

Classification accuracies and execution times for LDA after 10-component PCA.  stands for the method of quantization of each 
measure and   designs the method with mean-measure quantization. RFF (Random Fourier Features) is an approximation of KME.

K̃
K̄
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Thank you for your attention!
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